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Abstract. The trail problem, a variant of the self-avoiding walk in which excluded volume 
is associated with lattice bonds rather than sites, is studied numerically in two and three 
dimensions. Monte Carlo and exact series methods are used, but the results obtained lack 
the consistency of similar results for self-avoiding walks. The evidence in support of the 
two models belonging to the same universality class is suggestive though not entirely 
convincing, but slowly decaying corrections to scaling could account for apparent exponent 
differences. 

The self-avoiding walk, a well explored model for linear polymers, has spawned a 
number of variants that are no less intractable theoretically than the original. One 
such model is the trail (Malakis 1976), a random walk in which the excluded volume 
constraint applies to the bonds of the lattice rather than to the sites. Unlike the ordinary 
self-avoiding walk (SAW) where a site may be visited only once, the trail may revisit 
a site several times provided different bonds are traversed on each visit; for a lattice 
with coordination number q, up to $4 visits to any site are allowed. Additional models 
in the same family include k-tolerant walks (Malakis 1976) which allow sites to be 
visited up to k times but with no restriction on bond usage, and v-vertex trails (Shapir 
and Oono 1984) which are trails that are allowed to visit a site only U (<q/2) times; 
further models with combinations of these and other characteristics (e.g. loops smaller 
than a given size permitted) are readily devised, but none yield to analytic solution, 
and thus are of little help with the longstanding question of how exactly the non- 
Markovian self-avoidance condition alters the asymptotic behaviour of the random 
walk. 

Each model relaxes the strength of the excluded volume relative to the SAW and it 
is tempting to think of them as interpolating between the SAW and the simple random 
walk (RW).  SAWS and RWS exhibit very different kinds of asymptotic length dependence; 
the mean-square end-to-end distance of the SAW is given by R’, - AN’” ( N  is the 
number of steps), with v =0.75 for d = 2 (Nienhuis 1982) and -0.592 for d = 3 
(Rapaport 1985a), whereas for the strictly Markovian RW v = 0.5, independent of lattice 
dimensionality. The question is whether the asymptotic behaviour of the other models 
resembles that of the SAW or whether the exponent v has a value intermediate between 

A heuristic argument was given recently based on an analogy between a walk 
permitted a finite number of visits to each lattice site and a spin model with an extended 
but still finite interaction range (Guttmann et al 1984). In the latter, the critical 
exponents remain unchanged (a manifestation of universality), and the same could be 
expected to hold true for k-tolerant walks. Certain walk models have been examined 

vSAW and VRW. 
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close to the upper critical dimensionality of the SAW (d, = 4), and  it was again concluded 
that the same critical behaviour is obtained (Shapir and Oono 1984). The validity of 
this argument is apparently confined to d = 4  where, it will be recalled, vSAW = vRW 
due to the irrelevance of excluded volume in determining critical exponents. Other 
arguments have indicated that the situation may be more complicated. In particular, 
it has been suggested (Malakis 1976) that k-tolerant walks and  SAWS share the same 
exponents for d = 2, but not for d = 3 because of differences in the properties of the 
RW (the relevance of the RW is not at all obvious since it is subject to no a priori 
restrictions on the number of revisits). Yet another argument applied to k-tolerant 
walks (Turban 1983) results in an  exponent that varies with k below a certain k- 
dependent critical dimension. 

Evidence that can be used to confirm or refute these arguments can only be based 
on numerical studies of the models themselves since, at the time of writing, no analytic 
solutions exist. In one such study carried out recently (Guttmann et a1 1984) it was 
found that the proposed k-dependent exponent mentioned above failed to materialise. 
There are certain difficulties associated with such a programme however. One potential 
obstacle is that, contrary to the expectations of universality, the exponents of the 
various models may actually differ, but by only small amounts; available numerical 
techniques are of limited accuracy and may therefore be incapable of helping decide 
whether different models share common exponent values. Furthermore, given that the 
excluded volume effect is weakened in each of the models, it is quite likely that the 
onset of asymptoticity will be postponed to an extent that the typical walk lengths 
achievable in exact enumeration and Monte Carlo calculations are inadequate for 
these problems. These caveats have to be borne in mind when interpreting numerical 
results. 

In this letter we describe the results of Monte Carlo ( M C )  and exact series calcula- 
tions for one of the models-the trail problem-in both two and three dimensions. 
The key result is of course the exponent v ;  the MC results will be shown to be of 
almost the same quality as those obtained in a recent MC study of the SAW (Rapaport 
1985a, b), but it is by no means apparent that the exponents are the same for the two 
models in three dimensions. The series calculations turn out to be of little help in 
resolving the issue. 

Monte Carlo simulations of trails on the square (SQ) and simple cubic (sc) lattices 
were carried out using techniques developed for the earlier SAW simulations. The only 
change required to the computational algorithm was to handle the altered nature of 
the excluded volume condition, a relatively minor modification. The trails generated 
ranged in length up  to N = 2400: for each length approximately 50 000 distinct realisa- 
tions were obtained, and the averaged values of mean-square end-to-end distance, R’,, 
and radius of gyration, S’,, are shown in table 1. The results of a least-squares fit to 
the data are given in table 2;  the fits are to R’, - A R N 2 ” ~  and S’, - A,N*”s, and are 
carried out on the logarithms of the quantities concerned. The relative deviations 
included in table 1 are an  indication of the close fits provided by these asymptotic 
expressions; the deviations are less than the statistical uncertainty of the MC results 
(the average spread obtained by grouping the measurements into eight blocks is close 
to 1.2% for both d = 2  and  3). 

A closer look at table 2 reveals that in two dimensions the exponents vR and vs 
differ by approximately four times their statistical error, whereas for the SAW (Rapaport 
1985b) the corresponding difference is less than the error; the errors themselves are 
of similar magnitude for both models. The value of vR for the trail, namely 0.7471, is 
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Table 1. Monte Carlo estimates of R L  and Sk, and the deviations from asymptotic fit. 

R k, S L  

N mean deviation mean deviation 

SQ 160 
320 
640 

1200 
2400 

1216.1 
3408.8 
9718.6 

24 673.4 
69 370.5 

0.0001 
-0.0048 

0.0072 
-0.0003 
-0.0022 

174.19 
484.60 

1365.93 
3456.00 
9750.69 

0.0030 
-0.0040 

0.0020 
-0.0040 

0.0030 

sc 120 
300 
600 

1200 
2400 

252.0 
718.4 
1608.7 
3601.3 
8060.0 

0.0061 
-0.0068 
-0.003 1 

0.0003 
0.0035 

40.87 
116.62 
259.89 
580.48 

1303.44 

0.0059 
- 0.0048 
-0.0046 
-0.0022 

0.0056 

Table 2. Exponent and amplitude estimates based on fits to the MC results. 

SQ sc 
~~ ~ 

VU 0.7471 * 0.0009 0.5788 * 0.0010 
VS 0.7432 * 0.0008 0.5779 *0.0010 

0.619 f 0.008 0.981 i0.012 
0.0920 = 0.0009 0.1606*0.0021 

A,  
As 

very close to the unbiased MC estimate for the SAW of 0.7479, a value subsequently 
replaced by the exact 0.75 with little degradation in the quality of the fit. -In the case 
of the SAW vR and vs are essentially equal numerically, whereas the trail exponent vs 
lies significantly below vR (the qualifier ‘significantly’ is to be understood relative to 
the error estimates). It goes without saying that the errors present in the linear fit 
could easily conceal a certain amount of residual curvature due to a lack of complete 
convergence : this is an obvious (but not substantiable) explanation for the differences 
between the exponent estimates. 

In three dimensions the difference between vR and vs lies within the error limits, 
although the errors themselves are approximately three times those of the SAW, as are 
the mean deviations from the asymptotic fits (Rapaport 1985a). The trail exponents 
lie about 2% below those of the SAW, a difference markedly greater than the statistical 
errors. Exponent equality cannot be ruled out, however, just for the reason given in 
the previous paragraph. The presence of this difference between the numerical results 
for trail and SAW should serve as a warning: if trails of the lengths considered here 
cannot be relied upon to yield the correct exponent there is little hope of reaching 
meaningful conclusions on the basis of much shorter trails, such as those to be used 
in the series analysis below. The foregoing statement is equally applicable to the other 
models mentioned earlier. 

In the case of the SAW, series analysis has proved capable of giving a reasonable 
picture of the asymptotic N dependence, even though an element of uncertainty is 
introduced into the extrapolation by the absence of knowledge concerning the scaling 
corrections (Rapaport 1985a). To test the performance of the method for the trail 
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problem we carried out an  exact enumeration of trails with u p  t c  eleven steps on the 
FCC lattice. The counts cN and conformational properties R', and S', are listed in 
table 3. The series for R', and S', are only one term shorter than the corresponding 
SAW series (Majid et a1 1983, Rapaport 1985a). 

Table 3. Exact enumeration results for trails on the FCC lattice. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
132 

1452 
15 924 

173 940 
1 895 820 

20 631 372 
224 238 132 

2434736556 
26414247492 

286368796668 

12 
288 

4 908 
73 104 

1 012 980 
13 408 464 

171 955 932 
2154751440 

26526854028 
322030865424 

3865319008524 

12 
552 

15 600 
349 176 

6 788 580 
120 076 224 

1984031328 
31 134855 984 

469 241 620 620 
6845665570824 

97 231 358 604 144 

The series were analysed using the same methods as for the SAW. The Neville table 
for the connective constant p computed from cN is shown in table 4 (the assumed 
asymptotic form is cN - B p " N y - ' ) .  The values are close to 10.77, a result that is itself 
not too different from q - 1 (= 11); q - 1 is the value of p for a random walk in which 
the only restriction is that immediate reversals of direction are prohibited. This 
proximity of p values establishes the mildness of the excluded volume effect for trails 
on the FCC lattice; by way of contrast the SAW has p = 10.037. 

Table 4. Neville table extrapolation for the connective constant p : m is the degree of the 
polynomial (in N-') to which the entry corresponds. 

m 0 1 2 3 
n 

8 10.869 10.772 10.743 10.668 
9 10.858 10.770 10.761 10.798 

10 10.849 10.769 10.764 10.770 
11 10.841 10.767 10.758 10.742 

Neville tables for the conformational exponents v R  and vs are shown in table 5. 
Taken at face value the analysis suggests that both exponent values are near 0.54, but 
a slow drift to some higher value (e.g. to the MC prediction) cannot be excluded, in 
much the same way that the SAW Nevill tables suggested a v d u e  close to 0.60 but also 
indicated a gradual downward drift (Rapaport 1985a). The obvious conclusion is that 
series expansions for the trail model, even more so than for the SAW, are too short to 
provide an  unambiguous answer as to the nature of the critical behaviour. 

This would not be the first occasion that numerical analysis of critical phenomena 
has produced incorrect results: models that contain a seemingly irrelevant (from the 
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Table 5. Neville table analysis of the exponents vR and vs. 

0 1 2 3 k 
7 0.5352 0.5346 0.5430 0.5611 

R i .  8 0.5353 0.5359 0.5398 0.5344 
9 0.5355 0.5366 0.5391 0.5379 
10 0.5357 0.5377 0.5421 0.5489 

7 0.5534 0.5443 0.5455 0.5555 
S’, 8 0.5522 0.5439 0.5426 0.5378 

9 0.5513 0.5435 0.5420 0.5408 
10 0.5505 0.5435 0.5437 0.5477 

point of view of universality) parameter appear to have exponents that change as the 
parameter is altered, an effect that is demonstrably spurious (e.g., the dilute Ising 
model-Rapaport 1972). The reason for this effect is fully understood: varying the 
parameter alters the amplitudes of the scaling correction terms without modifying the 
principal exponent: if, however, the corrections become significantly large, the numeri- 
cal analysis techniques see only an ‘effective’ exponent that includes contributions 
from the correction terms, with no possibility of isolating the leading order term. Since 
trails (together with k-tolerant walks, etc) can be regarded as perturbed forms of the 
SAW (with the parameter characterising the strength of the perturbation), it is reasonable 
to conclude that a similar effect occurs in the case of the trail exponents, and that the 
true critical properties are obscured by the presence of non-negligible correction terms. 

Note added. A recent series study of the trail problem (Guttmann 1985) which examined the cN expansions 
in two and three dimensions, and the R’, expansion for the triangular lattice, arrived at a similar conclusion, 
namcly that the trail appears to belong to the SAW universality class but is a considerably more difficult 
problem to handle numerically. 
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